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Abstract

In this work, we study one-shot video object localization
problem that aims to localize instances of unseen objects in
the target video using a single query image of the object. To-
ward addressing this challenging problem, we extend a pop-
ular and successful object detection method, namely DETR
(Detection Transformer), and introduce a novel approach –
query-guided detection transformer for videos (QDETRv). A
distinctive feature of QDETRv is its capacity to exploit in-
formation from the query image and spatio-temporal con-
text of the target video, which significantly aids in precisely
pinpointing the desired object in the video. We incorporate
cross-attention mechanisms that capture temporal relation-
ships across adjacent frames to handle the dynamic context
in videos effectively. Further, to ensure strong initialization
for QDETRv, we also introduce a novel unsupervised pre-
training technique tailored to videos. This involves training
our model on synthetic object trajectories with an analogous
objective as the query-guided localization task. During this
pretraining phase, we incorporate recurrent object queries
and loss functions that encourage accurate patch feature re-
construction. These additions enable better temporal under-
standing and robust representation learning. Our experiments
show that the proposed model significantly outperforms the
competitive baselines on two public benchmarks, VidOR and
ImageNet-VidVRD, extended for one-shot open-set localiza-
tion tasks.

Introduction
The field of computer vision has long been engaged in the
pursuit of localizing objects of interest within videos. In the
past, the primary emphasis has been localizing the speci-
fied object within a single frame on the entire video (Sivic
and Zisserman 2003). Additionally, efforts have been made
towards recognizing individuals based on their facial fea-
tures (Sivic, Everingham, and Zisserman 2005) or cloth-
ing characteristics (Brunelli and Falavigna 1995). In a more
novel direction, some research has explored using natural
language or sketch-based queries to precisely locate ob-
jects within images (Minderer et al. 2022; Sadhu, Chen, and
Nevatia 2019; Kumar and Mishra 2023; Tripathi et al. 2020,
2023). As visual comprehension continues to advance, there
is a need for localization methodologies that can effectively
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Figure 1: Illustration of the proposed task. Given an un-
seen query image and a target video, the model is expected
to localize all instances of objects present in the query image
on the target video. [Best viewed in color].

pinpoint unfamiliar objects in the video that were not en-
countered during the training phase and unexpectedly ap-
peared during testing. This is particularly relevant in various
application areas, including surveillance systems and indus-
trial automation. We illustrate our open-set one-shot object
localization goal in Figure 1.

To address the challenge posed by open-set one-shot ob-
ject localization, our goal is to develop a model that, once
trained, can localize any object query that might arise un-
expectedly during testing. As noted in some of the recent
works (Hsieh et al. 2019a; Osokin, Sumin, and Lomakin
2020), such a model should maintain its class-agnostic na-
ture even during the training process. Our requisites, distinct
from approaches, necessitate prior access to the list of cate-
gory names during both training and testing (Fan, Tang, and
Tai 2022; Du et al. 2022; Liang et al. 2023). To this end,
we extend a popular and successful object detection method,
namely DETR (Detection Transformer) (Carion et al. 2020),
and introduce a novel query-guided detection transformer
for videos – QDETRv. The QDETRv leverages the visual
representation of the query image to better localize the target
object in the video frames. To handle the temporal context
in videos, we incorporate cross-attention that captures infor-
mation from neighboring frames of the video. The key and
value matrices of the cross-attention are obtained from the
contextual and target frames, and the query matrix is derived
from the query image. The cross-attention operation pro-



duces the final context-aware feature representation, which
inputs the query-guided DETR. To ensure stronger initial-
ization of QDETRv for our targeted task, we introduced an
unsupervised, video-specific pretraining approach. During
the pretraining phase, we employed a feature reconstruction
loss combined with recurrent object queries to enhance rep-
resentation quality and temporal learning.

To facilitate our study, we have extended two exist-
ing datasets, VidOR (Shang et al. 2019a) and ImageNet-
VidVRD (Shang et al. 2017a), by splitting them into train
and test sets such that there are no common object categories
between the two sets. We obtain query images from each
object category from the Google open-images (Kuznetsova
et al. 2018) dataset. This dataset preparation ensures a real-
istic evaluation of one-shot learning performance on videos
containing unseen objects. Here, we must highlight that we
employ category-wise splits to conduct experiments. How-
ever, our model remains entirely class-agnostic during the
training and testing phases. Our experimental results demon-
strate the effectiveness of our proposed one-shot video ob-
ject localization approach on the extended VidOR (Shang
et al. 2019a) and ImageNet-VidVRD (Shang et al. 2017a)
datasets. By combining the query-guided DETR with the
video-specific context module, our method exhibits robust
performance in localizing instances of unseen objects in tar-
get videos.

The contributions of this work are twofold: (i) We pro-
posed a novel category-free and query-guided extension to
DETR. Our proposed model – QDETRv incorporates a tem-
poral module, capitalizing on temporal context for superior
object localization within videos. (ii) We introduced a novel
video-specific unsupervised pretraining for QDETRv. This
pretraining objective is analogous to our downstream one-
shot localization task, resulting in a notable improvement in
the localization performance.

Related Work
One/Few-Shot Object Detection
Over the last few years, there has been significant progress in
one/few-shot object detection, largely due to the adoption of
sophisticated strategies such as attention mechanisms, trans-
formers, and few-shot learning techniques (Sun et al. 2021;
Fan et al. 2020; Wu et al. 2020; Kang et al. 2019; Wang
et al. 2020; Sun et al. 2021; Fan, Tang, and Tai 2022). These
strategies have been successful in a variety of domains, en-
compassing both image-based and video-based object de-
tection, thus broadening the scope and application of these
advanced detection methods. Recently, CoAE (Hsieh et al.
2019b) and OS2D (Osokin, Sumin, and Lomakin 2020) have
shown significant advancements toward one-shot object de-
tection in images. The CoAE (Hsieh et al. 2019b) makes
ingenious use of co-attention and co-excitation mechanisms
to generate region proposals and highlight correlated fea-
ture channels, thereby improving the accuracy and efficiency
of object detection. On the other hand, the OS2D (Osokin,
Sumin, and Lomakin 2020) model stands out as a versatile
one-stage system that simultaneously performs localization
and recognition tasks, proving its effectiveness in various

detection scenarios. In the realm of few-shot object detec-
tion, recent innovations have resulted in the development
of models like the feature reweighting-based model (Kang
et al. 2019), the Multi-level Feature Enhancement (MFE)
model (Wu et al. 2020), the Counting-DETR (Nguyen et al.
2022) model for few-shot object counting and detection, and
the Fast Hierarchical Learning (She et al. 2022) model de-
signed to address the catastrophic forgetting issue. These
models, each exploring different aspects of few-shot learn-
ing, have contributed to improved performance across vari-
ous datasets and settings. In the context of video object de-
tection, models like the Tube Proposal Network with Tem-
poral Matching Network (Nguyen et al. 2022) and the Thaw
method (Yu et al. 2022) for few-shot learning in video ob-
ject detection have been proposed. Both models harness the
power of attention mechanisms, transformers, and few-shot
learning techniques to achieve compelling results. There
have been several successful advances towards developing
DETR (Carion et al. 2020) variants in recent years for ad-
dressing different objectives; for example, in (Dong et al.
2022), authors proposed an incremental DETR that can gen-
eralize to novel classes with finetuning on a few examples.
In (Jia et al. 2022) proposed different variants of object
query, and (Jia et al. 2022) proposed an auxiliary one-to-
many matching branch during training to enhance the per-
formance of DETR for object detection in images. In (Dai
et al. 2021) proposed UP-DETR method that enhances the
original DETR (Carion et al. 2020) model by introducing
unsupervised pretraining with a random query patch detec-
tion pretext task, demonstrating considerable performance
improvement. The advancements in these areas suggest that
the continuous refinement of these techniques can lead to
substantial improvements in object detection across image
and video domains with limited supervision.

Transformer-Based Pretraining

Pretraining methods based on transformers, such as
BERT (Kenton and Toutanova 2019) and GPT (Brown et al.
2020) for natural language processing, and ViT (Dosovit-
skiy et al. 2021) for computer vision, have revolutionized
the landscape of various tasks, including object detection.
These methods leverage self-attention mechanisms to learn
high-level semantic features from large-scale data, resulting
in models with robust generalization capabilities. By pre-
training on large-scale data with diverse modalities, such as
image-text pairs (Minderer et al. 2022), these models can en-
hance the quality of representation learning, and also enable
the transfer of this knowledge to downstream tasks, even
when object-level data are scarce, thereby circumventing
some of the limitations of traditional methods. Furthermore,
unsupervised pretraining techniques, such as the random
query patch detection proposed by UP-DETR (Dai et al.
2021), have shown promise in enhancing the performance
of object detection models. By capitalizing on the strengths
of the transformer architecture in capturing long-range de-
pendencies and spatial localization, these techniques offer
exciting avenues for future research and development in ob-
ject detection.
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Figure 2: Illustration of the proposed QDETRv. The process begins with the feature extraction of a query image and video
frames using a CNN encoder. A cross-attention mechanism and dot-product attention are used to create an attention map,
transforming target frame features. The output is integrated into DETR’s encoder, and predictions for bounding boxes are
generated using the DETR decoder. [Best viewed in color].

Query-Guided DETR for Videos (QDETRv)
Given a query image Iq featuring an unseen object, the ob-
jective is to spatiotemporally localize all instances of the un-
seen object within a target video V . Videos, with their in-
tricate interplay of spatial and temporal dimensions, present
both opportunities and challenges for localization. Harness-
ing this complexity effectively ensures high precision and
reduces false localization. To this end, in this work, we pro-
posed QDETRv that effectively harnesses the temporal con-
text from the neighboring frames for better localization of
unseen objects.

In this work, we utilize a query image Iq , a frame It, and a
set of adjacent frames S from the target video. These frames
are defined as S = {It+j}, where j = −k to k with tem-
poral context window 2k + 1 for the tth frame of the video
V .
Feature Encoding: The query image, target, and contex-
tual frames are processed through a Convolutional Neu-
ral Network (CNN) encoder to generate corresponding fea-
ture representations. This results in the dimensions Iq, It ∈
RCk×M×N and S ∈ RCt×M×N , where M and N are the
height and width of the CNN feature maps and Ck, and Ct

are the channel dimensions.
Cross-Attention Mechanism for Temporal Context:
In our work, we utilize the cross-attention mecha-
nism (Vaswani et al. 2017) to encode temporal context
within the target frame and enable interaction between the
query image and the target frame. As part of this process,
we first generate Query Q ∈ RC×MN , Key K ∈ RC×MN ,
and Value V ∈ RC×MN matrices using convolution opera-
tions of kernel size 1 × 1. Subsequently, we apply the dot-
product attention (Vaswani et al. 2017) between Query and
Key, which results in an attention map. The latter serves as

a storage of correspondences between the visual feature of
the query image and the temporal context extracted from the
video. This attention map is then used to transform the tar-
get frame features represented by Value. This process leads
to output features O ∈ RC×MN , which can be defined by
the following equations:

W = Softmax
(
QTK√

C

)
, (1)

O = VWT ⊙Q. (2)

Here, ⊙ represents element-wise multiplication. The out-
put features are enriched by adding positional embedding
and are then integrated into the encoder of DETR (Carion
et al. 2020). This allows the localization of unseen objects
within the target frame, which is treated as a direct set prob-
lem similar to DETR (Carion et al. 2020). The decoder’s role
is to generate N pairs of predictions y = {ŷi}Ni=1 to accu-
rately determine the bounding box of the query object in the
current frame. Further, we leverage the Hungarian algorithm
to calculate the matching cost between the prediction ŷσ̂(i)
and the ground truth yi. Here, σ̂(i) signifies the index of yi
as computed by optimal bipartite matching.
Loss Formulation: The predicted result ŷi = (ĉi ∈
R2, b̂i ∈ R4, p̂i ∈ RC) comprises three elements: (a) ĉi,
this binary classification determines whether a match with
the query object is found (ci = 1) or not (ci = 0) for each
object query. (b) b̂i, this vector is responsible for defining
the box center coordinates along with its width and height,
represented as x, y, w, h. (c) p̂i is feature reconstruction used
during pretraining for additional supervision. Taking into ac-
count these definitions, we define the Hungarian loss for all
matched pairs as:
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Figure 3: Unsupervised Video Pretraining: Each frame, along with its associated query patch and context frame, is fed into
QDETRv. The model detects the patch on every frame using decoded object queries responsible for predicting the bounding
box. These decoded queries are then forwarded to the next frame as object queries for the decoder. Containing the semantic
information extracted from previous frames for patch objects, they facilitate the detection in subsequent frames. During this
phase, an unsupervised query reconstruction loss is also applied as an extra supervisory mechanism. The model has been pre-
trained on a synthetically created dataset to enhance its performance. [Best viewed in color].

(3)
L(y, ŷ) =

T∑
t=1

N∑
i=1

[
λciLmatch(c

t
i, ĉ

t
σ̂(i))

+ 1ci=1Lbox(b
t
i, b̂

t
σ̂(i)))

]
.

In this equation, T is the number of frames, Lmatch refers
to the binary cross-entropy loss over two classes (match the
query object vs. not match), and λ symbolizes the class bal-
ance weight. The Lbox is a combination of l1 loss and the
generalized IoU loss, with the weight hyper-parameters be-
ing the same as those in DETR (Carion et al. 2020).

Unsupervised Pretraining of QDETRv
Inspired by UP-DETR (Dai et al. 2021), we introduce a
video-specific pretraining strategy suitable for QDETRv.
This pretraining strategy is designed to locate a specific
query patch within each frame, a process that aligns closely
with our main objective. We devised a synthetic dataset
based on the UCF101 (Soomro, Zamir, and Shah 2012)
dataset inspired by (Wang et al. 2021). Our video-specific
pretraining aims to identify and locate the query patch in
every video frame, mimicking our main video frame local-
ization task, as visualized in Figure 3. To ensure our pre-
training approach is effective and aligns well with our pri-
mary task, we have added two additional mechanisms: (i)
We integrated an unsupervised query reconstruction loss,
as suggested in (Dai et al. 2021). This additional loss im-
proves training signals and ensures high-quality embeddings
are formed. The combined loss for this pretraining phase is
represented as:

L(y, ŷ) =
T∑

t=1

N∑
i=1

[
λciLmatch(c

t
i, ĉ

t
σ̂(i))

+ 1ci=1Lbox(b
t
i, b̂

t
σ̂(i)) + 1ci=1Lrec(p

t
i, p̂

t
σ̂(i))

]
.

(4)

Here, Lrec represent the reconstruction loss defined be-
low:

Lrec(p
t
i, p̂

t
σ̂(i)) =

∥∥∥∥∥ pti
|pti|2

−
p̂tσ̂(i)

|p̂σ̂(i)|2

∥∥∥∥∥
2

2

. (5)

(ii) To enhance the temporal context further, we used recur-
rent object queries. We fed decoded object queries from the
decoder (which localizes the query patch) into the decoder
again for predicting the patch in the subsequent frame, as de-
picted in Figure 3. To incorporate recurrent queries, we used
a memory module. The memory is a 256×100 matrix where
100 is the number of object queries used in DETR, with each
object query having a dimension of 256×1. During pretrain-
ing, for every frame, it stores decoded object queries (re-
current queries) responsible for localization. The recurrent
queries carry temporal context from the previous frames and
help to localize the object in the subsequent frames. Their
utility is quantitatively evaluated in Table 4.
We also incorporated an unsupervised image-level pretrain-
ing for UP-DETR (Dai et al. 2021). During this image-level
pretraining phase, the primary objective is to localize a ran-
domly selected patch within the input image. For this pre-
training stage, we employed the ImageNet (Russakovsky
et al. 2015) dataset.



Method Pretraining Vid-OR (Shang et al. 2019a) VidVRD (Shang et al. 2017a)

Seen Unseen Seen Unseen

CoAE (Hsieh et al. 2019a) - 35.3 32.8 29.2 27.1
Retrieval-Based (Osokin, Sumin, and Lomakin 2020) - 3.11 2.47 2.08 1.48
OWL-ViT (Minderer et al. 2022) - - 28.6 - 22.5
UP-DETR (Dai et al. 2021) ✗ 37.4 35.4 33.7 28.5
UP-DETR (Dai et al. 2021) ✓ 41.7 38.1 39.4 37.1
Ours

QDETRv ✗ 40.2 38.6 38.9 35.7
QDETRv ✓ 43.1 41.6 42.6 38.5

Table 1: Comparative performance of different baselines and our method on Vid-OR (Shang et al. 2019a) and VidVRD (Shang
et al. 2017a) datasets. The metric for evaluation is mAP. QDETRv methods outperform other baselines across both datasets and
splits, with pertaining significantly boosting the performance.

Split Vid-OR VidVRD

Seen Unseen Seen Unseen

#Train Videos 4,795 6,164 574 758
#Train Object Queries 53,277 57,599 3,413 4,395
#Train Object Categories 75 75 30 30
#Test Videos 1,319 32 184 42
#Test Object Queries 29,108 407 1,088 112
#Test Object Categories 75 9 30 5

Table 2: Overview of the Vid-OR (Shang et al. 2019a) and
VidVRD (Shang et al. 2017a) datasets, summarizing the dis-
tribution of training and testing videos, object queries, and
object categories for both seen and unseen splits.

Experiments and Results
Datasets and Performance Measure
In this work, we employed three primary datasets: Vi-
dOR (Shang et al. 2019b), ImageNet-VidVRD (Shang et al.
2017b), and Open Images (Kuznetsova et al. 2018). We
further refined VidOR and ImageNet-VidCRD annotations,
segregating super-classes like fruits and vegetables. Ex-
tracted target frames from both datasets were paired with
Open Images. Some low-frequency classes were excluded
during training, but all frames were used in testing. Note
that our method is class-agnostic and does not use the class
information during training and testing. Dataset statistics are
provided in Table 2.
Dataset for Pretraining: For effective visual representation
learning, synthetic datasets are crucial given the challenging
task of annotating real object movements in videos. We be-
gin by generating a simulated trajectory resembling object
movement. Consistency is ensured using bounding boxes at
chosen keyframes, with in-between positions filled by lin-
ear interpolation. Patches from real video frames are then
superimposed on this trajectory. The UCF101 (Soomro, Za-
mir, and Shah 2012) dataset, featuring 13,320 videos with
diverse complexities, was employed for pretraining, given
its suitability to improve our approach.
Performance Measure: We have utilized the mean Average
Precision (mAP) at an Intersection over Union (IoU) of 0.5
as our primary evaluation metric. Our evaluation operates
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Figure 4: Ablation study on the temporal context window
size using the VidOR dataset. A positive correlation is ob-
served between the window size and the mAP.

framewise, considering each frame as a separate detection
problem.

Baselines and Implementation Details
The absence of prior work on class-agnostic one-shot video-
based object localization methods inclines us to benchmark
our proposed method against image-based techniques in a
frame-wise fashion. However, such models might not be
able to capture temporal aspects of the video.

Retrieval-based approach: A naive approach would in-
volve combining an object detector that detects all objects
as one class coupled with an image retrieval system for
one-shot detection. This system utilizes the object detec-
tor’s detections as a database and class objects as queries
to search for relevant images. Inspired by baselines in (Os-
okin, Sumin, and Lomakin 2020), we utilized object detec-
tors with identical architectures.

CoAE (Hsieh et al. 2019a): It uses non-local operations to
explore the co-attention embodied in each query-target pair
and yield region proposals accounting for the one-shot sit-
uation. It then formulates a squeeze-and-co-excitation that
adaptively emphasizes correlated feature channels to help
uncover relevant proposals and, eventually, the target ob-
jects. This method intentionally casts the learning formula-
tion such that it does not solely rely on the label information
of training data but instead explores correlated evidence re-
vealed by the query-target pairs.



Method Bear Carrot Coconut Frisbee Kangaroo Lemon Leopard Melon Orange Stop sign

CoAE 37.8 19.2 33.6 25.4 42.6 21.3 46.9 22.8 28.1 30.6
OWL-ViT 35.7 20.3 28.5 21.7 38.6 22.8 42.8 20.3 25.3 27.4
UP-DETR 47.5 32.6 36.1 32.8 50.1 30.2 50.7 31.4 30.2 35.3
QDETRv 47.9 35.3 38.6 33.4 51.4 30.9 52.3 33.2 30.8 35.8

Table 3: Class-wise performance comparison. Each column indicates performance for distinct object categories. Larger objects
like bears, kangaroos, and leopards are better detected than smaller ones like coconuts and lemons.

Recurrent Query VidVRD VidOR

✗ 37.9 40.3
✓ 38.5 41.6

Table 4: Ablation studies on recurrent queries during pre-
training showed improved performance. This highlights the
importance of adding temporal context in the pretraining
phase.

OWL-ViT (Minderer et al. 2022): We used it as the
one-shot image-conditioned object detection method for the
video by applying it at each frame. OWL-ViT used a Vi-
sion Transformer architecture and contrastive image-text
pretraining.

UP-DETR (Dai et al. 2021): It refines the DETR model
via unsupervised pretraining using a random query patch de-
tection task. By selecting random image patches as queries
and training the model to detect them, UP-DETR addresses
challenges like balancing classification with localization by
freezing the CNN backbone and managing multiple query
patches with attention masks. This approach significantly
boosts UP-DETR’s performance in one-shot object detec-
tion, leveraging pretraining to achieve enhanced accuracy
with minimal labeled data.

Implementation Details: We pre-train and fine-tune our
models using the Adam optimizer (Kingma and Ba 2015)
with an initial learning rate = 1e-5. The initialization of
our frame and query encoders leverages weights of ResNet-
50 pre-trained on the ImageNet dataset (Russakovsky et al.
2015). We train the model for 200 epochs with batch size
= 350. Our implementation was done using the PyTorch li-
brary. We trained the model on three Nvidia-RTX A6000
GPUs.

Results and Discussions
The results presented in Table 1 showcase the perfor-
mance comparison of various methods applied for both
of the datasets, Vid-OR (Shang et al. 2019a) and Vid-
VRD (Shang et al. 2017a). The methods assessed include
baselines Retrieval-Based (Osokin, Sumin, and Lomakin
2020), OWL-ViT (Minderer et al. 2022), CoAE (Hsieh et al.
2019b), UP-DETR (Dai et al. 2021) (QDETRv without tem-
poral module), and our QDETRv, with the latter two being
tested both with and without pretraining.
Performance of QDETRv: For the Vid-OR dataset, QDE-
TRv with video pretraining yielded the best performance

Target Frame window size: 3 window size: 5 window size: 7 window size: 9

Figure 5: Cross-attention visualization on test frame with
varying window size. Attention improves on objects of in-
terest with an increase in window size.

with 43.1% for seen and 41.6% for unseen classes, sur-
passing its performance without pretraining, which scored
38.6% and 40.2%, respectively. It’s important to note that
unsupervised video pretraining improved the results signif-
icantly, highlighting its effectiveness as a strategy for this
task. We get similar observations for the ImageNet-VidVRD
dataset.
Ablation Study on Temporal Context Module: To eval-
uate the effectiveness of the temporal context module inte-
grated into QDETRv, we conducted an ablation study where
this module was removed. We exclusively adopted an image-
level approach for unsupervised pretraining, eliminating
the recurrent queries and leveraging the ImageNet (Rus-
sakovsky et al. 2015) dataset. Without a context module
with image-level pretraining, our method becomes similar
to UP-DETR (Dai et al. 2021). The results from this ab-
lation demonstrated a notable 3.2% performance boost for
QDETRv without pretraining. Furthermore, with pretrain-
ing, there was a 1.4% enhancement in performance on Vi-
dOR (Shang et al. 2019a) dataset for the unseen test set as
shown in Table 1.
Fine-tuning with varied Temporal Context Windows: As
we progressed to the fine-tuning stage, we explored differ-
ent temporal context windows, spanning a range from 3 to
9, as depicted in Figure 4. Interestingly, our results indicated
that as the temporal context window expanded, there was a
corresponding enhancement in performance. This trend un-
derscores the pivotal role of temporal context in improving
localization accuracy.
Cross-attention Visualization for varied temporal con-
text: Figure 5 shows the cross-attention visualization on the
test frame for different window sizes. The attention to the
object of interest improves with an increase in the window
size, showing the efficacy of temporal context being utilized
from context frames of the video.
Ablation on Recurrent Queries: Table 4 presents an abla-



Figure 6: Qualitative results. In the green box results, QDETRv accurately localizes objects from the query image on the left.
The red box highlights the model’s limitations, with missed localization in videos where the object is only partially visible in
the query image.
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Figure 7: Failure Cases. We observed the following major failure types: (i) The occluded object is missed, (ii) A visually
similar object is detected as dear on the top left, (iii) a few small instances of the hammer are missed, (iv) an overlapping
instance is commonly detected as a single object.

tion study focusing on the impact of recurrent queries during
the pretraining phase. When recurrent queries are employed
(indicated by ✓), there’s a noticeable performance improve-
ment on both datasets: 0.6% on ImageNet-VidVRD (Shang
et al. 2017a) and 1.3% on VidOR (Shang et al. 2019a), com-
pared to when these queries are omitted (✗). While seem-
ingly modest, these increments emphasize the added value
of recurrent queries in capturing intricate temporal informa-
tion during pretraining.
Class-wise Performance: Table 3 shows the class-wise per-
formance on VidOR dataset. Intriguingly, larger-sized ob-
jects like bear, kangaroo, and leopard generally achieve bet-
ter performance compared to relatively smaller objects, such
as coconut and lemon.
Qualitative Results: QDETRv effectively localizes query
objects both spatially and temporally within the videos, as
shown in the first two rows of Figure 6. Notably, in the sec-
ond video, QDETRv adeptly identifies multiple instances of
the object.
Failure Case Analysis: While our proposed methodology
has shown promising results, it does come with a few limi-
tations: our model QDETRv highly relies on the quality of
the query image for object localization in videos. As shown
in Figure 6 (red box), occluded query images often lead to
weak or missing localization. Further, we observe the fol-

lowing major failure cases: (i) occlusion, (ii) visually similar
object, (iii) small object, and (iv) overlapping instances, on
randomly selected video frames. Figure 7 shows a selection
of these examples. We leave addressing these limitations of
the current model as the future scope of this work.

Conclusions
We introduced the novel class-agnostic query-guided DETR
for videos (QDETRv), effectively enhancing video object
localization using a query image and temporal context.
We showed evaluations on two extended datasets that
displayed superior and consistent performance of QDETRv,
particularly when paired with video-specific unsupervised
pretraining. While showing promise, our approach has a
few limitations, including limited success in localizing
small or occluded object instances. Further, it struggles to
differentiate between visually similar objects. We leave
addressing these limitations as future work and firmly
believe this work will open up new research avenues in
open-set one-shot video object localization.
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